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ABSTRACT 

Topological groups which are free from small subgroups and topological 
groups with locally uniformly continuous group multiplication are considered. 
Results concerning square roots, one-parameter subgroups and extensions 
of local groups are obtained as well as some generalisations of theorems for 
locally compact groups. 

Our aim in this paper is to investigate, in the spirit of Hilbert's fifth problem, 

topological groups which are not locally compact. We shall approach the problem 

in two ways: the more abstract in Part I and the more concrete, for commutative 

groups, in Part II. Since the two approaches are interrelated we have brought them 

together in the same paper. In Enflo [1] we proved that locally Banach local 

groups, in which x ~ x y  is continuously Frechet differentiable and (x ,  y)-- ' ,  x y  is 

locally uniformly continuous, are analytic local groups, thus generalising the 

results of Segal [4] and Birkhoff [5]. In [1] it turned out that the local uniform 

continuity of the group multiplication is an essential assumption and so we will 

begin this investigation by studying topological groups with locally uniformly 

continuous group multiplication. 

In Chapter 1 we derive some simple properties of topological groups with 

locally uniformly continuous group multiplication and also generalise some 

results for locally compact groups. 

In Chapter 2 we study topological groups which are free from small subgroups 

and give theorems concerning uniqueness of square roots, the connection between 

square roots and one-parameter subgroups and so on. We also give some results 
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concerning extensions of local groups and embeddings of commutative groups 

in metric linear spaces. The results from this chapter are needed in the last chapter 

of Part II of this paper. The results from the first two chapters often throw light 

on phenomena appearing in locally compact groups and we have pointed this 

out. 

In Chapter 2 we introduce the concept "uniformly free from small subgroups" 

(which for locally compact groups is trivially the same as "free from small sub- 

groups"). This turns out to be a fruitful concept, it will also be used frequently in 

Part II. Subsequently some ways to continue the study of Hilbert's fifth problem 

become clear. One is to extend differential calculus and Lie theory to the class 

of topological linear spaces which, regarded as topological groups under addition, 

are uniformly free from small subgroups. Another way is to characterise Banach 

spaces in terms of topological groups and so to study topological groups which 

have some of the properties which are found. In Chapter 3 we briefly discuss 

these approaches and also present some of the difficulties which we will encounter. 

In Part II we turn instead to commutative groups and make the assumption directly 

that the uniform structure of the group is the same as the uniform structure of 

some appropriate Banach space (or some similar assumption). With the aid of 

information we have from Part I this will give us in many cases quite good in- 

formation as to the structure of the topological group. 

In Chapter 4 (the first chapter of Part If) we give the necessary geometrical 

background for this approach. 

In Chapter 5 we study uniformly Banach commutative groups with some 

Lipschitz condition on the group multiplication or the condition of uniform 

continuity only. We give theorems concerning existence and largeness of square 

roots. The results have immediate application to purely geometrical problems and 

so we have given the simplest of these as corollaries to the theorems. In the final 

section of this chapter we study subgroups of the additive groups of Banach 

spaces and give sufficient conditions for these to be linear subspaces. An example 

shows that Theorem 5.2.1 is in a sense the best possible. 

However, it turns out in Chapter 5 that we must study purely geometrical 

problems in topological linear spaces to get more precise information of the group 

structure. This is done in Chapter 6. In this chapter we present, among other things, 

a beginning of a solution of the problem of classifying topological linear spaces 

from the point of view of uniform equivalence. This problem was also posed by 
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Bessaga [6] and Lindenstrauss [7]. For instance we prove that if a topological 

linear space which has a bounded neighbourhood of 0 is uniformly homeomorphic 

to a Hilbert space, then it is linearly isomorphic to the Hilbert space. 

In Chapter 7 we combine results from the preceding chapters in order to obtain 

theorems concerning the structure of commutative groups. 

Statements of some open problems occur throughout the paper. 

1. Topological groups with locally uniformly continuous group multiplica- 

tion. 

1.1. Definitions and elementary properties of uniformities in topological groups. 

For the definition of uniform space the reader is referred to Kelley [8]. We recall 

that if G is a topological group, then the left uniformity for G is the uniformity 

which has as a base the family of sets {(x, y) [ x -  ly 6 U} where U runs through 

the neighbourhoods of e in G. The right uniformity is defined in the same way 

but we consider xy-1 instead of x - l y .  In this paper we often talk about subgroups 

of linear spaces and there we always mean subgroups of the additive groups of 

the linear spaces. Thus topological linear spaces will be regarded as special types of 

topogical groups. 

When we talk of a commutative group as a uniform space we will always mean 

the group with the left (or, equivalently, the right) uniformity. When we talk of a 

commutative metric group as a metric space we will always mean the group with 

some invariant metric. In this paper we will always assume that the topological 

groups are Hausdorff. We will always consider real linear spaces. A neighbourhood 

need not necessarily be an open set. 

Let X and Y be uniform spaces and let f be a map X ~ Y. We shall say that a 

subset A of X is a uniform set for f if for every member of the uniformity for Y 

there is a member U of the uniformity for X such that x 6 A and (x, y )6  U 

( f (x ) , f (y ) )  ~ V. 

PROPOSITION 1.1.1. I f  f is continuous and A is compact, then A is a 

uniform set for f. 
We omit the simple proof. The proposition shows that the concept "uniform set" 

in some sense generalises the concept "compact  set". 

PROPOSmON 1.1.2. If, for some uniformity q[ for the topological group G, 

( x , y ) ~ x y  is uniformly continuous as a function UZ x U Z ~  U 4 for some 

symmetric neighbourhood U of e, then ql coincides on U with the left and the 
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right uniformity for G. The mapping x - ~ x  -1 is then uniformly continuous 

on U. 

PROOF. { ( x - 1  x) lx ~ U) is a uniform set for ( x , y ) ~  xy with respect to ~ .  

Thus for every member P1 of the restriction of ~ / to  U there is a member P2 of 

the restriction of ~/ to U such that (x ,y)  EP2 ~ ( x - l x ,  x-~y)  ~P~. Thus 

(x, y) ~ P2 =~ (e, x -  ly) ~ Pi and since ~//gives the topology of G, every member 

of the restriction of the left uniformity for G to U contains a member P2 of the 

restriction of ~ to U. 

On the other hand {(x, e) I x ~ U} is a uniform set for (x, y) ~ xy with respect 

to d//. Thus for every member P1 of the restriction of ~//to U there is a member P2 

of the restriction of q / t o  U such that (e, x -  Xy) ~ P2 ~ (x • e, x • x -  ly) ~ P1, that 

is (x, y )~  P1. Thus if x - l y  is sufficiently close to e then (x, y)~  P1 and so Pa 

contains a member of the restriction to U of the left uniformity for G. The argu- 

ments above also hold for the right uniformity for G. Hence the left and the right 

uniformities for G coincide on U and x ~ x -1 is uniformly continuous on U. 

The proposition is proved. 

Proposition 1.1.2 makes the following definitions natural. We say that a topo- 

logical group G is a locally uniform group if there is a uniform structure ~ for G 

and a neighbourhood U of e in G such that (x, y) ~ xy is uniformly continuous 

on U × U with respect to dg. We say that G is a uniform group if U can be chosen 

to be all of G. 

PROPOSITION 1.1.3. A topological group is a locally uniform group if  

and only i f  its left and its right uniformity coincide on some neighbourhood of e. 

PROOF. The "only  i f "  part follows from Proposition 1.1.2. If  the left and the 

right uniformity coincide on some neighbourhood of e then there exists a symmetric 

neighbourhood U of  e such that for every neighbourhood V of e there exists a 

neighbourhood //1 with the property: x~  U 3, y ~  U 3 and x - l y ~  VI ~ x y  -1 E V. 

Let V be a neighbourhood of e and let V~ have the property described above. 

Let V2 be a neighbourhood of e such that V 2 ~ V1 and let V 3, Va c V2 be a sym- 

metric neighbourhood of e such that x E U 3, y ~ U 3 and x -  ~y ~ V3 ~ x y -  1 e V2. 

Now let x,y ,  x l , y  1 be elements in U and let x ; l x E  1/3 and y ~ l y ~  V3 hold. Then 

y l y - a~V 2  and x - l x l ~ V 2  and thus y l ( y - l x - i x l ) ~ V 1 .  This gives that, 

y~lx-~Ixy ~ V and thus the group multiplication is locally uniformly continuous 

in the left uniformity of the group. The proposition is proved. 
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The proofs of Propositions 1.1.2 and 1.1.3 also give that G is a uniform group 

if and only if the left and the right uniformity for G coincide. The remaining 

propositions of this section give information of the behaviour of product groups 

and quotient groups. 

PROPOSITION 1.1.4. The direct product of a fami ly  of uniform groups is a 

uniform group. 

PROOF. Let U be a neighbourhood of the unit element in the product group G. 

Then U contains a neighbourhood V of the form V~ x V~ x ... x V~. x G~',~ ..... 

where V~ is a neighbourhood of e in the group with index c~ i in the product 

and G',~...~. is the direct product of  the groups with indices different from 

al ,a2, . . .cq.  Nowlet  V 1 = Vl ,~2 x Vl,ct 2 x . . .  x Vl,an x G;la2 ..... be aneighbourhood 

of e in G, VI,~s = V~j such that x~  1 . Y~I e 1"1.~j =~ x~ . y ~  i e V~j. Then, in G, 

x -  l y e  V1 ~ x y -  1 e V c U, and thus the left and the right uniformities for G 

coincide. The remark following Proposition 1.1.3 completes the proof. 

PROPOSmON 1.1.5. The direct product of a fami ly  of locally uniform 

groups is locally uniform group if and only i f  all groups of the fami ly  are 

locally uniform and all but a finite number are uniform. 

PROOF. We begin with the " i f "  part. Let (with the same notation as above) 

V = V~, x V~2.. ' x V,, x G'=~,~ ..... be a neighbourhood of e in G such that G'~,2 ..... 

is uniform and the left and the right uniformities for the group with index a1 

coincide on V,~. If U is any neighbourhood of e in G then U contains a neigh- 

bourhood V1 of e, V1 ~ V of the form V1 = Vl,~, x Vl,~... x VI,~. x VI,~.+, 

• .. x Vl,+, x G',,,~ ..... and V1 contains a neighbourhood Va of e 

v ~ =  v~,:, x v~,:~... × v~,:, x 6':,,~ . . . . .  

- "  , • V - 1  l < = j < m  such that x~j e V~j, y~ e V~j and x~/  y=j e 1/2 ~ =~ x~j y~j e i,~, = 

(for n < j __< m, V~ is the whole group with index %.). Thus x e V, y e V and 

x -  l y • V2 ~ x y -  1 e V1 ~ U. This gives that the left and the right uniformities for 

G are locally the same and proposition 1.1.3 gives that G is locally uniform. 

If  in the direct product G there is an infinite number of groups which are not 

uniform so that, if V is a neighbourhood of e in G, V contains of group of  the 

form (e,e, . . . ,e ,G~,e,  ...) where G~ is not uniform. Thus in G,~ there is a neigh- 

bourhood Vl,~, of e such that for every neighbourhood V2,=, of e there are elements 

x~ e G~,, y~, • G~, such that x~-, 1 • y~  • V2,~, and x~, • y ~ ¢  Vi,=,. Thus if V1 is the 
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neighbourhood G' ,  x VI,,, of  e in G then for every neighbourhood V 2 of e in G 

there are x ~ V and y ~ V such that x -  *y ~ V2 but xy -  1 ~ V1. Thus the left and the 

right uniformity for G do not coincide on V and so G is not locally uniform. 

The proposition is proved. 

PROVOSITION 1.1.6. I f  H is a closed normal subgroup of the locally uniform 

group G, then G/H is a locally uniform group. 

PROOF. Let T be the natural mapping G ~ G/H. Then T is open and con- 

tinuous. Let U be a neighbourhood of e in G such that the left and the right 

uniformities for G coincide on U 2. We prove that the left and the right uniformities 

for G/H coincide on T(U). Let V be a neighbourhood o f e  in G, V ~ U, and let W 

be a neighbourhood of e in G, W c U, such that x ~  U 2, y ~  U 2 and x - l y ~  W 

~ x y - l ~ V .  Now let p l~T(U) ,  p2~T(U)  and p~ lP2~T(W ) hold. Then 
- 1  

Pl P2 = T(y) for some y ~ W and if we put Pl = T(x) where x ~ U then we get 

P2 = T(xy) where xy ~ U 2. Thus PiP21 = T(xy -  i x -  1) and since x -  l(xy) ~ W 

we have xy- 1 x-  1 e V and PiP21 ~ T(V). Thus the left and the right uniformities 

for G/H coincide on T(U) and Proposition 1.1.3 gives that G/H is a locally uniform 

group. 

The proof  of  Proposition 1.1.6 also gives that G/H is uniform if G is uniform. 

I f  G is a topological group, H a closed subgroup of G and i fH  and the left coset 

space G/H are locally compact,  then G is locally compact  (see Montgomery 

and Zippin [-9] pp. 52-53). There is no similar theorem for locally uniform groups. 

In fact, in Example 2.2.2 below, H and G/H are both commutative (and hence 

uniform) but G is not uniform. By taking a suitable product of  such examples we 

obtain an example where G is not even locally uniform. 

LEMMA. G is a uniform group if and only if for every neighbourhood U of e 

there is a neighbourhhod V of e such that for all x eG ,  x - l V x  ~ U. 

We omit the simple proof. 

PROPOSITION 1.1.7. I f  G is a connected and locally connected topological 

group, H is a discrete normal subgroup of G and G/H is uniform, then G is 

uniform. 

PROOF. Let U be a symmetric neighbourhood ofe  in G such that U 2 n H = {e}. 

Let T be the natural map G ~ G/H. Let V be a connected neighbourhood of e in G, 

V c U such that for every p ~ G/H p - l T ( V ) p  c T(U), by the preceding lemma 

such a V exists. Then for every x e G we have T ( x - l V x ) ~  T(U) and since x - l V x  
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is connected and U 2 n i l =  {e) we have x - l V x ~  U. The preceding lemma 

completes the proof. 

It follows from Proposition 1.1.7 that the universal covering group of a compact 

connected Lie-group is uniform and so by Proposition 1.1.6 every connected 

Lie-group which is locally isomorphic to a compact group is a uniform group. 

This observation suggests the problem of extending results proved for connected 

Lie-groups locally isomorphic to compact groups to uniform, connected, locally 

Banach analytical groups. For  instance, it has been proved that in a connected 

Lie-group which is locally isomorphic to a compact group every element lies on 

a one-parameter subgroup (see Tondeur [-10]) and it seems very likely that this 

conclusion holds for a much larger class of uniform, analytical groups. 

1.2. Transformation groups. We shall say that a topological group G is 

locally generated, if for every neighbourhood V of e the smallest subgroup of  G 

which contains V is G itself. The reason for introducing this concept is that theorems 

which are proved for connected groups are in fact often proved automatically for 

locally generated groups and we shall in this paper give an example of a complete, 

commutative locally generated group which has more than one element and is 

totally disconnected, thus showing that there may be an essential difference between 

the concepts (Example 2.2.1). We observe that if H is an open and closed sub- 

group of a locally generated group G, then H = G. 

THEOREM 1.2.1. I f  a locally generated, uniform group acts effectively as 

a transformation group on the real line, then it is commutative. 

PROOF. Since the group is locally generated all transformations of the 

real line are monotone, increasing functions. This shows that they can be regarded 

as transformations of the extended real line with + oo and - oo as fixed points 

and we will regard them as such. We now show that if My is the set of fixed points 

for f then the points in My - Nr I are fixed points for all transformations of the 

group. 

If  x e M~r - N/j, then in every neighbourhood of x there is a point xl (which 

may be the same as x) such that f ( x l )  = xl and f ( y )  ~ y for all y in some interval 

to the right (or to the left) of Xl. We can assume f ( y )  > y for all y in an interval 

to the right of x 1 (otherwise consider f - 1 ) .  Assume that there is a transformation 

g s G with g(xl) ~ x 1. Then, in every neighbourhood of e in G there is an element 

h with h(xa) ~ xt since G is locally generated. We assume h(xl) > xl (otherwise 



Vol. 8, 1970 UNIFORM STRUCTURES IN GROUPS. I. 237 

consider h - l ) .  Now since G is uniform f " h f - "  is near e for all n if h is near e. 

But as n tends to infinity f " h f - " ( x  0 tends to a fixed point of f to to the right 

of xl.  This is a contradiction and shows that x 1 is a fixed point for all trans- 

formations of G and thus all elements of My - My are fixed points for all trans 

formations of G. 

The discussion above shows that it is enough to prove that any two transfor- 

mations of G commute in every interval [a, b] which has the property that for all 

f ~  G we have 1 / f (a )  = a, f ( b )  = b, 2 / f ( x )  = x for all x in (a, b) or f ( x )  ~ x for 

all x in (a, b). We consider such an interval. If f ( x )  > g(x)  for some x in (a, b) 

then 

f ( x )  > g(x)  for all x in (a, b). (1) 

Otherwise, f - l g  would have a fixed point in (a, b) without having all points in 

(a, b) as fixed points. A net g, such that g, -~ e has the property that g,(x)  ~ x 

for all x in (a, b). This and (1) gives that if for a sequence f , ,  f , ( x )  ~ x for some x 

in (a, b) then f , ( y )  ~ y for all y in (a, b) and (1) and Dini's theorem give that the 

convergence is uniform. For every transformation g e G  and every x e ( a , b )  

we form the set Ng,x = {g"(x) I n = 0, +_ 1, + 2,..-}. If ~ > 0 then by choosing g 

sufficiently near e we obtain 

sup d(y,  Ng,x) < e. (2) 
x,),E(a,b) 

Now if for some x e (a, b) we have h(x)  = gin(x) and f ( x )  = g"(x) then h and f 

commute on (a, b). This fact and (2) give that if h and f are transformations in G 

we can find sequences h, and f ,  such that h, and f ,  commute on (a, b) and 

h,(x)  ~ h(x)  and f , (x)  ~ f ( x )  for some x in (a, b). And then h. ~ h and f ,  -~ f  

uniformly on (a, b) and thus h and f commute on (a, b). This completes the proof  

of  the theorem. 

The proof  of  Theorem 1.2.1 gives, in fact, in fact, more information on the group 

structure than that it is commutative. However, it seems that little can be said 

about the topology of G if only we make the assumption that it is locally generated 

and uniform. In this paper we will go no further into the large field of transfor- 

mation groups. 

1.3. Locally uniformly open groups. In this section we generalise some of  the 

results of [9], pp. 54-56. We shall say that a set M in a topological group is uni- 

formly open if there is a neighbourhood V of e such that x ~ M =~ V x  ~ M .  An 
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open subgroup of a topological group is obviously uniformly open. The following 

theorem gives information on the structure of uniformly open sets. 

THEOREM 1.3.1. A set M in a topological group is uni formly open i f  and 

only i f  it is a union of  right cosets of  an open subgroup. 

PROOF. The " i f "  part is quite obvious and so we assume that M is a uniformly 

open set. Let V be a symmetric neighbourhood of e such that x e M =~ Vx  ~ M. 

Thus if U c M, then VU ~ M.And by induction on n this gives that if x e M then 

V"x c M and so [,.J~ = 1 V")x ~ M. This gives that M is a union of right cosets 

of the open subgroup (_J,_°° 1 V". We immediately get 

COROLLARY 1. Let G be a topological group and let U be a uni formly open 

neighbourhood of  e. Then U contains an open subgroup. 

The concept "uniformly open set" generalises the concept "compact  open set" 

since a compact open set obviously is uniformly open. We shall say that a topolo- 

gical group is locally uniformly open if there is a base for the neighbourhood 

system of e which consists of uniformly open neighbourhoods. A locally uniformly 

open group is totally disconnected. The product of a family of totally disconnected 

locally compact groups is locally uniformly open. A complete totally disconnected 

group need not be locally uniformly open as is shown by Example 1.3.1 below. 

Theorem 1.3.1 immediately gives 

COROLLARY 2. Let G be a locally uniformly open topological group and 

let V be a neighbourhood of  e in G. Then V contains a uni formly open sub- 

group. 

We now turn to uniform groups. 

LEMMA. Let G be a uniform group and let U be a neighbourhood of  e. There 

then exists a neighbourhood V of  e such that V ~ x - 1 U x  for  all x ~  G. 

PROOF. Since G is uniform there exists a neighbourhood V of  e such that 

x V x  -~ ~ U for all x ~ G. By multiplying the last inclusion to the left by x -1 and 

to the right by x we get the desired result. 

THEOREM 1.3.2. I f  G is a locally uni formly open uniform group and U 

is a neighbourhood of  e in G, then U contains a uni formly open invariant 

subgroup H. G/H is then a discrete group. 

PROOF. The Corollary 2 of Theorem 1.3.1 gives that U contains a uniformly 

open subgroup, call it H' .  Put H = 0  ~ o x - l H ' x "  Then H is by definition an 
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invariant subgroup. The preceding lemma shows that it is open and hence uniformly 

open. Since H is open G / H  is discrete. 

Reference [9] p. 57 gives an example of a totally disconnected locally compact  

group which has no invariant compact  open subgroups. Theorem 1.3.2 shows 

that such a group cannot be uniform. 

EXAMPLE 1.3.1. Let Gn be the g r o u p  {e 2nik/n , k = 0,  1, ' .- ,  n -- 1} and let G be 

algebraically the product of  the G~. Define a metric in G by putting d(a,  b) = 

= sup d(a , ,  b,,). Then G becomes a complete, metric, totally disconnected, com- 

mutative group. But G is not locally uniformly open. 

A locally uniformly open group with more than one element is not locally 

generated, by Corollary 1 of  Theorem 1.3.1. The group in Example 1.3.1 is not 

locally generated. However, in Example 2.2.1 below, we give an example of  a 

locally generated, complete, metric, totally disconnected, commutative group. 

It seems obvious to us that by a method similar to that used in example 2.2.1, 

it is possible to construct a totally disconnected, locally generated, complete 

subgroup of the Hilbert space. 

2. Groups which are free from small subgroups. 

2.1. Groups which are free from small subgroups and locally uniform groups. 

We shall say that  a topological group is free from small subgroups if there is a 

neighbourhood U of e such that x # e =~ x" ~ U for some n. We say that such an U 

is free from subgroups. We shall say that a topological group is dissipative if there 

is a neighbourhood U of e such that for every x ~ e there is an nx such that x ~ ~ U 

if n >_ nx. We shall say that U is a dissipative neighbourhood of e. A dissipative 

group is obviously free f rom small subgroups but the converse is not true. We 

shall say that a topological group is uniformly free from small subgroups if there 

is a neighbourhood U of e such that for every neighbourhood V of e there is a 

number n v such that x ~ V =~ x ~ ~ U for some n < n v. We say that such a U is uni- 

formly free from subgroups. We say that a topological group is uniformly dis- 

sipative if there is a neighbourhood U of e such that for every neighbourhood V 

of e there is a number nv  such that x ~ V ~ x ~ ~ U for all n > nv.  We say that such 

a U is a uniformly dissipative neighbourhood of e. A uniformly dissipative group 

is obviously uniformly free f rom small subgroups, but the converse is not true. 

In Chapter 3 we show that for neighbourhoods of 0 in topological linear spaces 

the concepts "uniformly dissipative" and " b o u n d e d "  coincide. It  is easy to see 
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that a locally compact group which is free from small subgroups is uniformly 

free from small subgroups and that a dissipative locally compact group is uni- 

formly dissipative. Example 2.1.1 and Theorem 2.1.1 show that this is not true 

for locally uniform groups. 

EXAMPLE 2.1.1. Let G be algebraically a countable infinite product of real 

lines. Let a base for the topology in G be the sets which are products of open 

intervals. G then becomes a topological group. Since no base at e is countable, 

G is non-metrizable. Since G is free from small subgroups it cannot be approxi- 

mated by metric groups (in the sense that every neighbourhood of e contains a 

subgroup H such that G/H is metrizable) in contrast to the theorem on page 

58 in [9]. 

Non-existence of small subgroups does not imply that a topological group is 

a locally uniform group, in contrast to Theorem 2.1.1. This is shown by Example 2 

and Theorem 3.3 in [1].  

THEOREM 2.1.1. I f  a topological group is uniformly free from small sub- 

groups then it is a metrizable, locally uniform group. 

PROOF. Let U be a neighbourhood of e which is uniformly free ~from sub- 

groups, and let W, be a sequence of neighbourhoods of e such that for every n, 

[,.J~=l wk c U. Then {Wn} is a base for the neighbourhoods of e. Let V be a 

neighbourhood of e, then if x ¢ V we have x" ¢ U for some n < nv and this implies 

that x ~ W, v. Thus W,,, c V and this gives that G is metrizable. Let d be a right 

invariant metric in G, i.e. d(xa, ya)= d(x,y). Then the uniformity of  d is the 

right uniformity of G. Let {x ] d(x, e) < r) be a sphere in U. Assume that the group 

multiplication is not uniformly continuous in the sphere 

1 
Then there is a positive e such that for every 8 > 0, 8 < 5/2, there are xo, Yo, xl, Yl, 

d(xj, e) <= r/8, d(y~,e) < r/8, d(xo, xt) < 8, d(yo, Yl) < 8, and d(xoYo, xlYl) > ~ 

Then d(xoyo, xoyl) > e - 8 > e/2 and d(xolxoyo, xolxoyl)  = d(yo, yl) < 8 that is, 

in the sphere {(x,y)]d(x,e)<= r/4, d(y,e)<= r/4} there exist for every 8 > 0, 

x2=xg 1, y2=xoyo, ya=xoyl such that d(y2,Y3)>e/2 and d(x2Ya,x2Y3)<8. Put 

Y2 = wY3. Then d(w, e) > e/2 and d(xaw, x2) = d(XEWy3, x2Y3) = d(x2Y2, x2Y3) < 8. 

And then d(x2w',x2 wn-1) = d(x2ww~-l,x2 w~-l) < 8 and this gives d(x2w',e) 

< d(x2,e) + n8 < r/8 + nS. On the other hand, since d(w, e) > el2 there exists 
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a number N depending only on e such that for some n < N we have d(w", e) > r. 

But then d(x2w",e)> r -  r/8 = 7r/8. Since 6 > 0 is arbitrary this is a contra- 

diction and the theorem is proved. 

Theorem 2.1.1 shows that it is natural to study locally uniform goups in con- 

nection with Lie theory. We notice that there is no corresponding theorem for 

locally compact groups since the conclusion is that the group is locally uniform. 

We also notice that the same discussion as in the proof  of Theorem 2.1.1 will 

improve theorem 3.1 in [1] : A local L-group is an analytic local group if and 

only if it is uniformly free from small subgroups. 

2.2. Square roots and one-parameter subgroups. We first recall the following 

theorem on uniqueness of  square roots (see [1] and [9] p. 120). 

THEOREM 2.2.1. I f  a locally uniform group is f ree  f rom small  subgroups 

then there is a neighbourhood U of  e such that i f  x e U, y e U and x 2 =  yZ, 

then x = y. 

In 1-1] it is shown that the theorem becomes false if the condition "locally 

uniform" is removed. The Theorems 2.1.1 and 2.2.1 immediately give 

2.2.2. I f  a topological group is uni formly  free  f rom small sub- 

there is a neighbourhood U of  e such that i f  x ~ U, y ~ U and x z = y2, 

In the following theorems of this section we consider the connection between 

square roots and one-parameter subgroups. If G is a topological group we shall 

say that a subset M of G is a one-parameter subgroup if M contains at least two 

points and there is a continuous map t ~ x(t)  from the real line onto M such that 

x(tx) • x(t2) = x(t l  + ta). We shall say that a topological group is locally complete 

if there is a neighbourhood of e which is complete with respect to the left and the 

right uniformity of G. In the following theorem we will for simplicity use additive 

notation of the group operation. 

THEOREM 2.2.3. I f  G is a commutative, uni formly dissipative, locally gen- 

erated and locally complete group and the set of elements of  the f o rm  2x is 

dense in G, then G is a topological linear space. 

PROOF. Since G is metrizable by Theorem 2.1.1 we can assume that d is an 

invariant metric in G. If d(2x,, 2y,)--* 0 for a sequence of pairs (x,, y,)  then 

d(x,,yn)--* O. For otherwise, if we put an = x , -  y , ,  some subsequence of  a, 

would be bounded away from e but 2ma, would tend to e as n ~ oo for every 
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fixed natural  number  m, and this contradicts  the assumption that  the group is 

uni formly dissipative. This gives in part icular  that  2x = 2y ~ x = y and that  

the well defined mapping  x ~ x]2 is a uniformly cont inuous  isomorphism. Since 

the group is uni formly dissipative we have that  if W is a uniformly dissipative 

ne ighbourhood  of  e then the solutions x,  of  the equations 2"x n = y tend to e as 

n ~ oo uniformly for y e W. We consider such a W. We form the set 

Uo = {2-"y ln=O,  1 , 2 , . . . , y e W  } and the sets U , =  {2 -"y lyeUo}  

Then the family o f  sets U, forms a fundamenta l  system of  ne ighbourhoods  o f  e. 

Thus we have for some k, Uk + Uk c Uo and this gives U,,+k + U,,+k c U,, for 

every n. 

Let N be a natural  number,  N > k, and consider the sets Mp = {N + pk, 

N + pk + 1,N + pk + 2, . . . ,N + (p + 1)k - 1} where p is a non-negative integer. 

Let y e Uo. We shall say that  a finite sum ~ 2  -mJ • y is of  type A if all mj are 

different and > N and if for every p, mj ~ Mp for at most  one j .  We have that  if 

z = ]~2-mr . y where the sum is o f  type A, then z~  UN-k. For  put  z = 2 -m° • y 

+ 2 -m'  • y + ... -t- 2 -mj • y where m r > mr_ 1. Then the sum of  the last two terms 

is certainly an element o f  UN4_(j_I) k + UN+jk C7. UN+(j_2)k. Thus the sum o f  the 

last three terms is an element of  UN+(j_2) k + US+(j_2)k c Us+t j_3) k. By repeating 

this discussion j times we get z ~ UN-k. We have that  every sum ~ 2  -m~ • y where 

all mj are different and all mj > N can be written as k sums of  type A and thus 

every such sum is an element o f  UN-k + UN-k + "'" + UN-k (with k terms UN-k). 

This gives that  the mapping  ~--* c~y f rom the positive dyadic rat ionals  into G is 

uniformly cont inuous and so it can be uniquely extended to all positive real 

numbers  and so it can  be uniquely extended to all real numbers• Since the g roup  

is local ly generated we can for all z e G uniquely extend the mapping  c~ --. ez f rom 

the positive dyadic rat ionals  into G to all real numbers  ~. This defines ez for all 

real numbers  e and all z e G. The laws fl(ez) = (fle)z and the distributive laws of  

linear spaces ho ld  since they hold  for dyadic rat ionals  and the discussion above 

and the formula  d(~y,%yo) < d(~y, ~Xyo)+ d(~xyo, C%yo) gives that  (~,y)--* ~y is 

continuous.  The theorem is proved. 

Example 2.2.1 below shows the impor tance  o f  the condi t ion "un i formly  dis- 

s ipat ive" in Theorem 2.3.3. Let  V be a symmetric ne ighbourhood  o f  e in a topo lo-  

gical group G. We shall say that  x e V lies on a unique local  one-parameter  sub- 

g roup  in V if there exists a unique funct ion 0~ --* x ~ f rom [- - 1, 1] into V such 
• X~l +~2 that  x ~1 x e2 = 
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THEOREM 2.2.4. I f  G is a uniformly dissipative, locally complete topological 

group such that for every neighbourhood U of e the set {x 2 [ x ~ U} is dense in 

some neighbourhood of e, then there exists a symmetric neighbourhood V of e 

such that every element in V lies on a unique local one-parameter subgroup in V. 

PROOF. It follows f rom Theorem 2.1.1 that  G is metrizable and local ly uniform 

and we assume that  d is a right invariant metric in G. We choose an e > 0 such 

that  the 2e-sphere a round e is uniformly dissipative and such that  group multipli- 

cat ion is uni formly cent inuous  in the 3e-sphere a round  e. We choose  a 6 > 0, 

6 < e, such that d(x,e) < 2e and d(a,e) < 6=>d(a-lxa, x) < e. We assume that  

there is a sequence of  pairs (x., y.), d(x., e) < 3, d(y., e) < 3 such that d(x 2, 2 y.)  ~ 0 

and d ( x ~ l y . , e ) >  61 for  all n and some positive 61. We put a.  = x~ 1 y.. Then 

we have d(a . , e )<2e  and thus we have d(x~ 1 a . x . , a . )<e .  We also have 

d(x~ 1 a.x., a~ 1 ) ~ 0 as n ~ ~ .  The locally uniformly cont inuous group multipli- 
2 m - -2m 

cation gives easily that  this implies that d(x~ 1 "a. "x . ,a  ) ~ 0  for every 

natural  number  m. Thus,  for every natural  number  m and every positive 62 < 3 

there exists a w such that  d(x~ 1 . a  z . x . , a~  v ) < 6 2  for a l l 0 < j < m  and all 
2J n > w. Then if d(a. , e) < 2e, j < m, we have 

d(aV+~,e)~ . ,  2s.~ - 2J 2J 2/" - 2 1  m,a, , x ,  1 a, x , ' a  2J) + d(x~l • • • " a .  . x , . a . , a .  . a  v )  

< e -it- 6 2  

which contradicts  that  the 2e-sphere a round  e is bounded.  This gives that  fo~ 

every ne ighbourhood  U of  e the set {x 2 1 x ~ U} is a ne ighbourhood  o f  e. Let W 

be a uniformly dissipative ne ighbourhood  o f  e such that  x ¢ W ~ x 2" 6 W for  all 

n > nw and such that  every element o f  W has a square roo t  in G and such that  

x e W, y ~ W and x 2 = y2 ~ x = y. N o w  if 171 is a sufficiently small ne ighbourhood  

of  e, then every element of  V I has a unique 2 " ' : t h  roo t  in W and thus for  every 

y e V 1 and  every n the equation 2"x, = y has a unique solution in W, and if V 1 is 

2 For  y e 1/1 consider the corn- sufficiently small the x, :  s must  satisfy x,  = x,_ 1. 

mutative g roup  generated by the x , : s .  This g roup  satisfies the condit ions o f  

Theorem 2.2.3 and thus we can uniquely extend the mapping  c~-, y~defined for  

dyadic rat ionals  c~ to real c~:s. N o w  the set V = { / l [  = I ---- 1, y e V 1 } is a symmetric 

ne ighbourhood of  e in which every element lies on a unique local  one-parameter  

subgroup. 

For  the p roo f  o f  the next theorem we will now introduce a concept  which 

will be o f  frequent use in Part  I I  o f  this paper. We shall say that  a sequence o f  
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n + 1 points y = Xo, Xx, . . . ,x ,  = z in a metric space is an e-chain between y and z 

if d(xi, x~+l) < e for 0 < i < n - 1. We shall say that ~d(xi, Xi+l) is the length of 

the chain. 

THEOREM 2.2.5. I f  in a locally generated, locally complete topological 

group G, (1) there is a neighbourhood U of e such that U" is uniformly dissipative 

for all n, (2) the set of elements of the form x 2 is dense in G, then every element 

in G lies on a unique one-parameter subgroup. 

PROOF. By Theorem 2.1.1 G is locally uniform and metrizable. Let d be a right 

invariant metric in G and choose an e > 0 such that the e-sphere around e is 

contained in U. Introduce a new metric dl in G by letting dl(x ,y  ) be the infimum 

of the lengths of  the e-chains between x and y. Then the uniform structures o f  d 

and dl are the same for d(x,y)  = d~(x,y) if d(x,y)  < e. We now assume that 

G is given the metric d 1. Since d~ is also right invariant the ne-sphere around e is 

contained in U". This gives that for every 6 > 0, dx(x 2", e) ~ oo as n ~ 0% uni- 

formly for x in the set {x ldl(x, e) > a}. This implies also that ( . ) d l ( x  2, e ) ~  oo as 

d(x,e) ~ oo. Assume that there is a sequence x, with dl(x,, e ) ~  ~ but with 

dl(x 2, e) < w for all n and some w. Since x, has an approximate 2 m : th root  for 

every m and dl(z 2'~, e) < 2 m • d(z, e) for every m and z this would contradict that 

the w-sphere around e is bounded. We now observe that (x, y) ~ xy  is uniformly 

continuous in the sphere dl(x, e) < w, dl(y, e) < w for every w. This follows from 

the p roof  of  Theorem 2.1.1 where it is proved that (x, y ) ~  xy  is uniformly con- 

tinuous in the sphere d(x, e) < r/8, d(y, e) < r/8 if  the sphere d(x, e) < r is group- 

bounded. Let x e G and let xn be a sequence such that x, ~ z. Then da(x,, e) 

is a bounded sequence by (.) .  The proof  that x, is a Cauchy sequence is now 

exactly the same as in the proof  of Theorem 2.2.4. This gives the existence and 

uniqueness of  the solution of the equation x 2 =  z for every z e G. Since every 
2 ~ w-sphere around e is bounded the solutions xn of the equations x,  = z tend to e 

as n ~ oo uniformly in every sphere d~(z, e) < w. Theorem 2.2.3 now completes 

the p roof  of  Theorem 2.2.5 in exactly the same way as in Theorem 2.2.4. 

Theorem 2.2.5 becomes false if "uniformly dissipative" is changed to "uni-  

formly free from subgroup"  in condition (1). This is shown by Example 2.2.2 below 

where neither the existence nor the uniqueness of square roots is true for all z e G. 

EXAMPLE 2.2.1. We consider the group G of numbers of  the form ~___ 2 mJ 

where every sum is finite and the mj" s are integers. We now define a metric d in G. 
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Put d(2n,0) = 1 if n > 0 and - ( l / n )  if n < 0. I f  y and z are both of the form 

~___ 2 ms we shall say that a sequence of points y = Xo, X 1 .-.,x,, = z is a special 

chain between y and z if for n - 1, I xl - x~+l I = 2'~' for some integer mi. We shall 

say that ~ d (  [ x~ - x~+ ~ 1,0) is the length of the chain. We let d(y, z)  be the infimum 

of the lengths of  the special chains between y and z. It is obvious that this definition 

of d(y,  z)  is consistent with the definition of d(2 ", 0) and it is obvious that d is an 

invariant metric. Thus G is a topological group under addition. We have ob- 

viously d ( 2 x , 0 ) >  d(x,O) and as n ~  ~ we have l imd (nx ,  O)>= 1. Thus in the 

completion G of G we have a complete, locally generated, dissipative, commutative, 

metric group in which every element has a unique square root and in which for 

every x = 0, d(nx,  0) > 1 for sufficiently large n. It is also a simple verification that 

if 2nx~ = y, then x, ~ 0 as n ~ ~ .  We now prove that G is totally disconnected 

in strong contrast to Theorem 2.2.3. 

Every element of  G corresponds in an obvious way to a real number, but the 
- -  4 n  converse of  this is not true. The sums ~n=k2 do not correspond to elements 

of G for any k > 1. For it is easy to see that  the shortest chain between 0 and 

v'm 2 -4n has length ~,n'=k 1/4n which tends to infinity a finite partial sum "-',=k 

with m. Now if M is a subset of  G which contains 0 and an element x > 0, 

then there is a real number c~ = Z,=k 2-4n between 0 and the real number 

corresponding to x. The subset of  M which corresponds to real numbers < ~ is 

open and closed in M. Thus G is totally disconnected. 

We shall say that a local group is a local L-group (left linear group) if 

(1) a neighbourhood of the unit element is a neighbourhood of zero in a Banach 

space and zero is unit element (2)the group multiplication satisfies x y  = y + Tyx 

where T r is a linear transformation depending on y, if x and y are smTiciently 

small. An L-group is a group in which a neighbourhood of the unit element is a 

local L-group. 

EXAMPLE 2.2.2. (This example is found also in [1].) We let ( x , y )  stand for 

an element in R a, x ~ R,  y ~ R z. We define a group multiplication in R a in the 

following way: ( x l , y l ) ' ( x z ,  y 2 ) =  (x l  + x2, Y2 + Vx2Yl) where x -~  Vx is a one- 

parameter  group of unitary linear transformations of  R z. In this way Ra becomes 

an L-group G. Let p be the smallest number > 0 such that Vp = I. Since 

Vv/z = - I wee see that (p/2, y)  • (p/2, y) = (p, 0) and so (p, y) has no square root 

for  y # 0 and many square roots for y = 0. It is easy to see that (x, y) has a unique 

square root and lies on a one-parameter subgroup if x = np, n # ... 1, _+ 3, + and 
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so the set of  elements of the form z 2 is dense in the group, it  is also easy to see 

that the w-sphere around 0 is uniformly free from subgroups for every w > 0, 

all in contrast to Theorem 2.2.5 above. I f  we put H = { ( x , y ) [ x  = 0} then H and 

G/H are both commutative but  G is not uniform, in contrast to the theorem 

on p. 52 in [9]. 

2.3. Extensions of local groups. We shall say that a local group satisfies the 

general associative law in a neighbourhood U of e, if any two association schemes 

such that the partial products of  x~ • x2 . . . .  xn are all in U give the same total 

product. In a theorem by Malcev (see [11]) a local group is locally isomorphic to 

a topological group if, and only if, the general associative law holds in some 

neighbourhood of e in the local group. In the next two theoeems we use additive 

notation of the group operation. In a local group we define 2"x inductively for 

natural numbers n to be 2 " - I x  + 2"-1X. 

THEOREM 2.3.1. I f  in a commutat ive  local group G with an invariant  metric d 

(1) to every e lement  y corresponds a unique x with 2 x = y ,  (2) 2x = y ~ d(x ,e )  

< d ( y , e ) a n d  2"x, = y ~ d(x, ,e)--* 0 as n-~ 0% then G is locally isomorphic to 

a topological group. 

PROOF. y/2 is well-defined for all y e G and we can inductively define y/2" for 

all natural numbers n. Choose e > 0 such that xl + x2 is defined if d(xj ,  e) < 2e. 

We prove that the general associative law holds in U = {x I d(x,  e) < e}. I f  xl ,  x2 

and y are in U and y = x l + x 2 ,  then x l / 2 + x 2 / 2 = y / 2 .  For ( x l / 2 + x 2 / 2 )  

+(Xl/2 -F xz/2)  = (x l /2  + X2/2 ) -F (X2/2 -[- x l /2)  = (x l /2  + x2) + x l /2  = x l /2  

+ (x~/2 + x2) = x l  + xz = Y and the uniqueness of  y/2 gives the result. Repeated 

use of  this law gives that if y = (xl  + ...) + (x j  + ... x .)  then y/2 = ( x J 2  + ...) 

+ (x j~2 + ... + x. /2)  if the association schemes are the same and all partial sums of 

y = (x~ + ...) + (xj  + ... + x.)  are in U. And repeated use of  this law gives that 

if y = (xl  + ...) + (xj  + ... + x , )  then for natural numbers m y/2 m = (x~/2 ~ + ...) 

+ (xj/2 m + ... + x, /2 m) if the association schemes are the same and all partial 

sums of y =  (Xl + " ' )  + (x j  + ... + x ,)  are in U. Now since xa/2 m ~ 0  

as n ~ 0o we have that if Yl = (x~ + ...) + (xj l  + ... + x,,) and Y2 = (xl + "") 

+ (x j2 + ... + x ,)  where all partial sums of  the two elements are in U then 

y l /2  m = y2/2" if m is sufficiently large. Thus Yl = Y2 and the general associative 

law holds in U. Malcev 's  theorem completes the proof. 

We shall say that a local group is a local Banach space if it is locally isomorphic 

to the additive group of some Banach space. 
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THEOREM 2.3.2. Let  G be a locally complete,  commutat ive ,  local group with 

an invariant  metr ic  d. I f  f o r  every y ~ G there is a unique x ~ G such that  y = 2x  

and 2d • (x, e) = d(y,  e) then G is a local Banach  space. 

PROOF. Choose an e > 0 such that xl + x2 is defined i fx j  ~ U = { x l d ( x ,  e) < ~}. 

Then for every element y ~ U the element ~y is well defined if I ~l < 1. We form 

the family B of equivalence classes of pairs (~, y) where ~ is a real number and 

y ~ U. (~, y) and (fi, z) are said to be equivalent if(c~/K)y = (f l /K) z ~ U for some K. 

Then there is an obvious one-to-one correspondence between U and a subset of B. 

We define a metric in B by putting d~(~y, flz) = limK_~ ~ K .  d((c~/K)y, (B/K)z)  where 

the right-hand side is defined if K is sufficiently large. The value of dl is obviously 

independent of the choices of members in the equivalence classes. It is easy to 

verify that d~ is a metric which coincides with d on U. We define multiplication 

of ay ~ B by a real number fl to be (fla)y. And then we define addition in B by 

putting ~y + fiz = l imK • ((c~/K)y + (f i /K)z) .  If  x l , x  2 and x 1 + x z are in U this 

definition coincides with the addition in G. The associative law in B is easily 

verified and so B is a Banach space which is locally isomorphic to G. The 

theorem is proved. 

THEOREM 2.3.3. A local L-group is locally isomorphic  to an L-group.  

PROOF. Choose an e > 0 such that x l x  2 is defined if xj e U = {x I d(x,  e) <= e}. 

Now if all partial products of (xa. . . )  (xi . . .  x,) are in U, then it is easy to verify 

that the product equals x ,  + T x x , - 1  + T x T x , _ , x , _ 2  + ... + TxT~._ ,  ... T~2x 1 

and this expression is obviously independent of the association scheme. Malcev's  

theorem completes the proof. 

2.4. Embeddings of topological groups in linear spaces. It is a general problem 

to characterise subgroups of the additive groups of linear spaces in terms of 

topological or metric groups In this section we give one theorem of this type. 

THEOREM 2.4.1. I f  in a commuta t i ve  topological group G there is an in- 

var iant  metric d such that d(2x,  e) = 2 • d (x , e )  f o r  all  x eG, then G is i somorphic  

to a subgroup of  a Banach space 

PROOF. Since d(2"x, e) = 2 m • d(x,  e) we immediately get d(nx,  e) = I n 1. d(x,  e) 

for  integers n and thus, if for a rational number r, rx is defined, we have d(rx,  e) 

= l r]"  d (x ,e )  We embed G in a space B by considering equivalence classes 

of formal products rx where r is a rational number and x ~ G We shall say that 
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two formal products r lx  and r2y are equivalent if there is a natural number p such 

that (prl)x and (pr2)y denote the same element of  G For those rational numbers r 

and x s G where rx is an element of G the formal product thus coincides with this 

element We define a metric dt in B by putting dl(rx, e )=  [ r l ' d ( x , e )  This 

definition is obviously independent of the choice of member of the equivalence 

class and d~ coincides with d on G We define addition in B by letting 

(p/q)x + (Pa/ql)Y be the equivalence class which contains (1/qql)(pqlx + PlqY). 

This definition of addition is consistent with the addition in G The completion 

of B now obviously is a Banach space which contains G as a subgroup 

3. Local convexity in groups and differential calculus in locally bounded linear 

spaces. 

3.1. Characterisation of classes of linear spaces in terms of topological groups. 

We recall that a neighbourhood of 0 in a topological linear space is said to be 

balanced if x e U => c~x e U if [ ~1 < 1 We recall that the family of balanced 

neighbourhoods of  0 is a base for the neighbourhood system at 0 in a topological 

linear space And we also recall the definition that a neighbourhood U of 0 in a 

topological linear space is bounded if for every neighbourhhod V of 0 there is a 

real c~ such that U c eV We now prove that this definition coincides with our 

definition of "uniformly dissipative" 

THEOREM 3.1.1. For a neighbourhood U of 0 in a topological linear space 

the properties (1) and (2) are equivalent 

(1) For every neighbourhood V of O there is a real ~ such that U ~ c~V. 

(2) For every neighbourhood V of 0 there is an integer n v such that x ~  V 

~ n x ~ U  ifn>=n v 

PROOF. (1) ~ (2). It is enough to prove that (2) holds for balanced neighbour- 

hoods V. I f  V is a balanced neighbourhood of 0 then (1) gives U c nvV if nv > c~ 

and this gives that x ¢  V ~ n x  ~ n v V = U  if n > n v ' ( 2 ) ~ ( 1 ) .  If  V is a neigh- 

bourhood of 0 then (2) gives that nvxe  U ~ x e  V. Thus U c nvV. 

We shall say that a topological linear space which has a bounded neighbourhood 

of 0 is a locally bounded linear space. 

LEMMA. A balanced neighbourhood of 0 in a topological linear space is 

bounded if  and only i f  it is uniformly free from subgroups. 

PROOF. Since a bounded neighbourhood is uniformly dissipative by Theorem 

3.1.1. we have only to show the " i f "  part. Let U be balanced and uniformly free 
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from subgroups. Thus if V is a balanced neighbourhood of 0 we have x ¢ 

for some n < nv. Since V is balanced this implies U ~ n v V  and so U is bounded. 

The lemma immediately gives 

THEOREM 3.1.2. A topological l inear space is locally bounded i f  and only i f  

it is un i formly  f r e e  f r o m  small  subgroups. 

We now turn to normable  spaces. 

THEOREM 3.1.3. A topological l inear space is normable  i f  and only i f  there 

exist  two un i formly  dissipative neighbourhoods U 1 and U 2 o f  O such that, i f  f o r  

k = 1 , 2 , . . . , n , j = l , 2 , . . - , n ,  k x j e  U 1 holds, then ~ = l x j e  U 2. 

PROOF. I f  the topological l inear  space is normable we can let U s and U 2 both 

be the unit sphere in some norm. We show the converse. Let V~ be a balanced 

neighbourhood of 0, V 1 c U~. We consider the set V2 which consists of  all elements 

of  the form ]~. = 1 xj  where kx~ ~ 111 for k , j  = 1, 2,. ..... , n. Then V 2 is a balanced 

neighbourhood of 0. We have by assumption V2 = U2 and so V2 is a bounded 

neighbourhood of 0. Thus it remains to show only that I7 2 is convex. I f  

Yl = ~ = ~  xl j  and Y2 = ]~k%~ X2~, are two elements of  V2 then the 2nm elements 

Xll  Xll  Xll  X12 X12 X12 X l n  X l n  X21 X21 X2m X2m 

2m'  2m" ' 2m '  2 m '  2m '  ' 2m '  ' 2 m '  ' 2m '  2n ' ' 2n ' ' 2n ' ' 2n 
k "N" ) k,._.~..,.y 1 

Xll n X21 
m 2-mm : S 2n ; s 

all have the property that when multiplied by a number  which does not exceed 

2nm they remain in V~ since V~ is balanced. And so their sum which is equal to 

(Yl + y2)/2 is in V2. Thus /7 2 is convex. The theorem is proved. 

The characterisation in Theorem 3.1.3 could be used as a definition of  locally 

convex groups without the assumption of commutativity.  However, it seems that 

also with this condition on a topological group we cannot obtain anything like 

the pleasant local commutativity property possessed by Lie groups, namely that 

d ( x y x - l y - l , e )  is much smaller than m a x [ d ( x , e ) , d ( y , e ) ]  if  x and y are near e. 

Thus it seems natural  instead to lie the condition on a uniformly dissipative group 

so that the geometrical structure of  the group is in some sense similar to the 

geometrical structure of a Banach space such is our approach in Part 2 of  this 

paper. 

3.2. Spaces with pseudo-norms. In this and the next section we introduce 
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differential calculus in locally bounded linear spaces. For a survey of what has 

been done on differential calculus in topological linear spaces the reader is referred 

to Averbukh and Smolyanov [12]. It seems, however, that our observations have 

not been made before. 

Let U be a bounded symmetric neighbourhood of 0 in the topological linear 

space B. We define a function Ix [ o n  B by putting Ix I =  infl /[  ~1, c~x e U if 

x ¢  0 and l x l =  0 if x = 0. Then the function ] x l h a s  tile properties: (1) l~xl 

= I [Ixl for real ~. (2)Ix I =O x=O. (3) [x + y[ =<_ K(Ix I + [y]) for some 

constant K. (4) Ix[ defines in an obvious way the topology of B. (3) holds since 

the sets eU form a base for the neighbourhood system at 0. Thus (1/K)U + (1/K)U 

c U for some K. We shall say that a functional defined on the abstract linear space 

A is a pseudo-norm on A if it has the properties 1-3 above. We shall say that a 

topological linear space is a pseudo-normed space if there is a pseudo-norm 

defined on the space which gives the topology of the space. The class of pseudo- 

normable topological linear spaces is obviously just the class of topological 

linear spaces which have a bounded neighbourhood of 0. I f [ x  [~ and Ix [2 are two 

psudo-norms on A which give the same topology on A then N llxll   lx12 
< N 2 [x I1 for some positive real numbers N 1 and N2. This holds since [x [1 < 1 

and Ix [2 < 1 are bounded neighbourhoods of 0 in that topology. Now let B and 

C be pseudo-normed spaces and let T be a continuous linear operator B ~ C. 

Put IT I =suPlrxl/Ixl. Then ITI becomes a pseudo-norm for the set of linear 

operators B-~ C and we call the operator topology given by this pseudo-norm 

the pseudo-norm topology. There is a problem which naturally occurs in the 

definition of pseudo-norm. If a pseudo-norm is defined as above by a bounded, 

symmetric and open neighbourhood U of 0 in a locally bounded linear space, 

then x ~ I xl is upper semi-continuous. Does there always exist a neighbourhood 

U of 0 which makes x ~ I xl continuous? 

3.3. Definitions and sgme properties of derivatives of functions between pseudo- 

normed spaces. We follow the terminology of Dieudonn6 (see [13] Ch. 8). Let B 

and C be pseudo-normed spaces and let A be an open open subset of B. Let f be 

a function A ~ C. We shall say that the linear operator u: B --> C is the derivative 

of f at x o if I f ( x ) - f ( x o ) -  u ( x -  xo) ] = o t x -  x o ]as  x ~ xo. Now we derive 

some consequences of this definition. 

PROPOSITION 3.3.1. The derivative of f a t  Xo is unique. 
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PROOF. 

PROPOSITION 3.3.2. 

is continuous.  
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The proposition follows immediately from the ineqiuality 

l u l ( x -  X o ) - u 2 ( x -  Xo)l < K ' ( I f ( x ) - f ( x o ) -  u 2 ( x -  Xo)]) 

+ K .  (]ul(x - Xo) - f ( x )  +f (xo)  1). 

I f  f is cont inuous and has the derivative u at Xo, then u 

PROOF. Since for every e > O  we have I f ( x ) - f ( x o ) - U ( X -  Xo)l < i  x -  Xol 

if X - X o  is suFficiently small we have l u ( X - X o ) i < K . ( i f ( x ) - f ( x o ) [  

+ e I x - x0 l) if x - xo is sufficiently small, which gives that u is continuous. 

PROPOSITION 3.3.3. I f  f ;(Xo) = Ul and f~(xo)  = ua, then ( f i  +f2)'(Xo) exists  

and  is equal to ul  + u2. 

PROOF. The proposition follows immediately from the inequality 

lit(x) +fz(x)  - f l (Xo)  - fz(Xo) - u , ( x  - Xo) - u2(x - Xo) [ 

=< K • ([fl(x) - f ~ ( x o ) -  ua(x - Xo) I + [f2(x) - f2(xo)  - u2(x - Xo)). 

PROPOSITION 3.3.4. I f  f ' ( X o ) =  U then i f  c~ is a real number  (ct f) ' (xo) exists  

and is equal  to c~u. 

PROPOSITION 3.3.5. Let  E , F , G  be three pseudo-normed spaces A an open 

neighbourhood of  xo ~ E, f a cont inuous func t ion  of  A into F, Yo =f(xo) ,  B an 

open neighbourhood of  y o in F, g a continuous func t ion  f r o m  B into G. Then  i f  f 

has a derivative at xo and g has a derivative at Yo, the func t ion  h = g o f has 

a derivative at  xo and we have h'(xo) = g'(Yo) o f ' ( x o ) .  

PROOF. We have 

[h(xo + s) - h(xo) - (g'(Yo) o f ' ( x o ) )  " s I 

= ]g o f ( x o  + s ) -  g o f ( X o ) -  (g'(Yo) o f ' ( x o )  ) • sl 

= [g'(Yo) " ( f ( xo  + s) - f ( x o ) )  + o l ( f ( xo  + s) - - f ( x o )  ) -- (g'(Yo) o f ' ( x o )  ) • s[ 

= [g'(Yo)" ( f ' ( x o )  " s + o2(s)) + o l ( f ( x  o + s) - - f ( x o ) ) - -  (g'(Yo) o f ' ( x o )  ) • s[ 

= ]g'(Y0) " oz(s) + o l ( f ( xo  + s) - f ( x0 ) ) ]  = o3(s). In the last equality we have 

applied a variant of Proposition 3.3.2. The proposition is proved. 

We do not derive any more properties of this concept of derivative. For normed 

spaces it is the same as the Frechet derivative. For pseudo-normed spaces it has 

in its present form one serious defect: there is nothing like a mean-value theorem 

in its present form and so in order to make Lie theory we have to make the def- 
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inition of derivative more restrictive. We do not try to solve this problem here, 

we only give the following example (a similar example is found also in [12]). 

EXAMPLE 3.3.1. For 0 < p < 1 define a pseudo-norm in Lp(0,1) by putting 

If  ] = (fo t [flp) 1/~. Consider the mapping t~ f ( t )  0 < t <  1 where f(t) is the 

function in Lp(0,1) which takes the value 1 in the interval [0, t] and the value 0 in 

the interval (t, 1]. We have If(t)-f(to)l  = ] t -  to[ 1/" = olt- to[ and so t ~ f ( t )  
has the derivative 0 for every t without being constant. 
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